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ABSTRACT

Turbulence in a stratified medium is studied with emphasis on stable stratification, as it occurs in the atmosphere
and oceans, and on the construction of a subgrid model (SGS) for use in large eddy simulation (LES). The
two basic assumptions of all SGS models are 1) that the unresolved scales are isotropic and 2) that they can be
described by a Kolmogorov spectrum and are no longer valid in a stably stratified medinm. Generation of
gravity waves invalidates the second assumption, while the damping of vertical motion induces a degree of
anisotropy considerably higher than in unstably stratified flows.

First, Weinstock’s model is used to find that the energy dissipation rate ¢ decreases with stability. By contrast,
the dissipation rate ¢, of temperature variance increases with stability. The effect of shear on the subgrid scales
is neglected.

Second, because of the higher anisotropy of stably stratified flows, even the most complete SGS model presently
in use must be enlarged to include new higher-order terms. A new second-order closure model is proposed in
which the three components of the flux ;6 can be obtained by inverting a 3 X 3 matrix and %;u; can be obtained
by inverting a 6 X 6 matrix. An approximate procedure is suggested, however, to avoid the 6 X 6 matrix
inversion and yet account for anisotropic production. The kinetic energy e is a solution of a differential equation.
It is also shown that in a deep LES, where the buoyancy scales are fully resolved, the standard models for € and
¢s are probably adequate, whereas in a shallow LES, where the buoyancy range may not be fully resolved, the
above effects on € and ¢; must be accounted for. It would be of interest to perform both a shallow and a deep
LES so as to check the predictions of the model proposed here.

Preliminary results indicate that the (total) kinetic energy dissipation length scale increase with stability, in
accordance with LES results but in disagreement with Deardorff’s model that suggested a decrease of all dissipation
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scales in presence of stratification.

1. Introduction

At present, the most promising approach to study
high Reynolds number turbulence is large-eddy sim-
ulation (LES), in which the largest energy-containing
scales are fully resolved, while the unresolved subgrid
scales must be represented via a subgrid scale (SGS)
model (Wyngaard 1984; Galperin 1992).

Following Deardorff (1974) and Schumann (1991),
we assume that the SGS functions needed in an LES,
namely, b; = w;ui; — 2ed;;/3, u;0 and e, are given by a
second-order closure (SOC) model (an overbar indi-
cates average over the grid size, whereas a tilde will be
used to indicate ensemble average). The turbulent ki-
netic energy e satisfies a differential equation, while the
differential equations for b; and ;6 are usually con-
verted to algebraic equations by neglecting the time
derivative and the third-order moments. In principle,
one can solve the resulting nine algebraic equations
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and express analytically the tensor 4; and the vector
u;0 in terms of the kinetic energy e, the mean shear S,
and the mean temperature gradients d7°/dx; ; the latter
are resolved quantities. Such a complete solution,
however, has never been attempted. There are reasons
for that. Physically, the unresolved scales are assumed
to be considerably more isotropic than the resolved
scales, and one can invoke a perturbative approach in
the “smaliness parameter” b; representing the depar-
ture from isotropy and classify the terms appearing in
the equations for b; and ;6 in terms of O(b”)
(Schemm and Lipps 1976). The most complete SGS
model presently in use is the one suggested by Schmidt
and Schumann (1989, referred to as SSM). In the
equations for b;;, they retain two terms of order O(1)
and one term of order O(b), while the term repre-
senting anisotropic production, also of order O(b), is
neglected. In the equation for u;6, the authors retain
only terms of order O( 1), while neglecting two terms
of order O(b).

The perturbative expansion in O(b") becomes less
justified in the case of stable stratification as the tur-
bulence is considerably more anisotropic due to the
strong damping of the dynamical modes working
against gravity. The safest approach would be to retain
all the terms in the equations for b; and ;6. This is
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easily accomplished for u;6, as all that is required is
the inversion of a 3 X 3 matrix. The inversion of the
6 X 6 matrix needed to obtain b;; is more complicated.
Although the inversion can be implemented in a LES
(M. Ypma, personal communication; see also Schmidt
1988), we also suggest a simplified procedure that leads
directly to an expression for b; without matrix inver-
sion.

The extension of the model for b;; and ;6 to include
anisotropic effects is, in some ways, the easiest part of
the problem. A major difficulty that has confronted all
SGS models, especially when dealing with stably strat-
ified flows, is the modeling of the dissipation rates of
kinetic energy and temperature variance, € and ¢. In
constructing these functions, it is assumed (e.g., see
SSM) that the subgrid scales can be described by a
Kolmogorov inertial spectrum (Ko is the Kolomogorov
constant)

E(k) = Koe?3k™5/3, (1)

which yields the well-known relation ¢ ~ ¢*/2["! where
[ =~ Ais the kinetic energy dissipation length scale and
A is the size of the smallest resolved scale. Assuming
(1) is physically equivalent to assuming ( Turner 1973)
that the subgrid scales do not undergo a transfer of
energy directly to or out of them; that is, they only
transfer energy from the largest scales to the smaller
scales via nonlinear interactions. In this picture of
“passive” eddies, the spectrum E(k) can depend only
on the constant rate of energy transfer ¢ and the local
wavenumber k. In the case of stable stratification, the
above picture is no longer valid since the eddies work-
ing against the stable stratification, that is, gravity, lose
kinetic energy, which appears as potential energy rep-
resented by the (8p/p)? fluctuations. This alone in-
validates one of the basic assumptions on which Eq..
(1) rests. The dissipation rate ¢ no longer need enter
the form of E(k). Instead, the physically relevant pa-
rameter is now the Brunt-Viisild frequency N. With
N and &, dimensional analysis demands that

E(k) ~ N%3, (2)
which is the form of the energy spectrum suggested by
Lumley (1964). The reason why the dissipation rate
does not appear in (2) is because ¢, the residual energy
that is ultimately transformed into heat, is not repre-
sentative of the spectral region where the transforma-
tion of kinetic to potential energy takes place. Because
of the loss of kinetic energy, the actual energy that is
left to be dissipated into heat must be considerably less
than the physical transfer (k) that occurs in the spectral
range described by (2). As much as kinematic viscosity
does not enter the Kolmogorov spectrum but serves to
define its region of validity, so is the role of € in this
case. It enters the definition of the wavenumber &, such
that for k < ko Eq. (2) holds while for k > k,, we have
Eq. (1). With Nand ¢, ko = (N3 1) /2, which is often

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 50, No. 13

referred to as the Ozmidov wavenumber. Lumley’s
expression for E(k) has the form

E(k) = Koe?’[1 + (k/ko)™*1k™1,  (3)

and this encompasses both spectral regions (1) and
(2), referred to as the inertial and buoyancy subranges,
respectively.

Even from this simplified discussion, it is clear that
if one computes the kinetic energy ¢ of the subgrid
scales

e= f E(k)dk 4)
w/A

using Eq. (1), one finds the well-known e—e relation-

ship,

(5a)

) \3¥?
— 302 _

=ce A, ¢ = 7wl = .
€=ce/B, e "(31(0)

This model has been used with success in several
LES calculations of neutral and unstably stratified
flows. In the case of stably stratified flows, use of (3)
in (4) still leads to the functional form (5a). Instead
of the constant c,, however, one has an energy-depen-
dent C{e) given by

1 " AZ 372
Cle) = cf(l 5 Kon A_};) R (5b)
where Ag is a buoyancy length scale defined as
1/2
Ay = eT . (5¢)

Clearly, the applicability of the model is limited to A
< 7wAp(2/Ko)!/%, A significant improvement of Lum-
ley’s original model was proposed by Weinstock (1978,
1980, 1985, 1990), who pointed out, among other
things, that a physically complete treatment of a stably
stratified flow must account explicitly for the gravity
waves that ultimately store the kinetic energy lost by
the eddies, and that the derivation of (3) was based on
an unjustified identification of Eulerian and Lagrangian
time scales. This in turn implies that E( k) depends not
only on N and k but also on the kinetic energy itself,
In this case, the complete form of the spectrum

E(k,N,e) (5d)

is considerably more complex than Eq. (3); see Eqgs.
(B.6), and (B.9). In this paper, we adopt Weinstock’s
model to compute the general forms of C(e) and Cy(e).

The organization of the paper is as follows. In section
2, we present the general expressions for e, by, and
u;0 needed in an LES: the final results are expressed
by Egs. (6), (11), and (12). In section 3, we compute
the functions C(¢) and Cy(¢) and thus the time scales
7. and 7. In section 4, we present some conclusions
and discuss plans for future research.
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2. The expressions for e, 6%, b;;, and u;0

Since the derivation of second-order closure SOC
models to construct the expressions for b;; and ;6 fol-
lows standard procedures, we shall quote here only the
final results (see appendix A for details).

kinetic energy equation:

d (1 —— —_
il =...i.Sl..___2i+_i U0 —
vk byS;; axi(zqu pu)+)\,u0 €
(6a)
equation for the temperature variance 02
— 0T 9 —5
=02 = 2ufh-—— — ybh*—
D ] 2u; ax o U; 2¢q (6b)

equation for by:
2647'by = 1(1 = ¢5)By — 3 (1 — o)eS;

- tl(l - ZQI)E;J' - t1(1 - 2a2)Z,-j
equation for u;0:

(7

o 2 _\oT
2¢6r. ’u,ﬂ = —(I3b,'j + "3‘ 6’5”) 'a_xj'
— 11(aS; + bR) w0 + (1 — ¢;)N02, (8)

where (the flags ¢’s, which can assume the values 0, 1,
will be discussed shortly)

| Q—

—_ 2
b,j = Uiu; — § eé,;,-, 5 u;u; = e,
Ai =&a, &= (09 03 g)a

By = Nt + N — 2 o,Maud
2
Zyj = Subi + Sjkbix = 3 65Subu

2
Z;= Ryby + Rjkbik -3 6|‘lekbk1

2S,'j = U,',_,‘ + Lyj,;, 2R,_, = U,' i l]j’,‘. (9)
The constants a, b, and ¢ will be discussed later. We
note that the last term in Z;; is always identically zero,
for it is the product of a symmetric tensor and an an-
tisymmetric tensor: it is included only to exhibit the
symmetry with the term in 2. .

As one can see, the equations for e, b;;, and ;0 re-
quire the knowledge of the dissipation rate e and the
two time scales

2e 62
Te= "7, T§g=
€ €

(10)

which we will consider in the next section. Here, we
shall discuss first Egs. (7)-(8).
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As for the equation for %8, Eq. (8) can be written
more compactly as

— 2

T
A,-jujﬂ = —(l3b,j +~ e&u)

b1 —c)N6?, (11a)
dx;

3

where

Therefore, to obtain 1,6, one needs to invert a 3 X 3
matrix.

In analogy with Schmidt (1988), we introduce the
flags 1,, 1>, and f; to help classify the various model
that have been used in the literature, namely:

a) First-order closure, FOC: t; = t, = t; = 0; these
models are discussed in appendix A.

b) Second-order closure, SOC2:t, =t =0, 1, = 1;
this model has been used by Schmidt (1988) and
Schumann (1991).

c) Second-order closure SOC3:t, =0,t, =t; = 1.

d) Second-order closure, SOCl: t, =t = t3 = 1.

The most appropriate model to treat stably stratified
flows and their inherent degree of anisotropy is the
SOCI. In its complete form, a significant complication
arises from the last two terms in Eq. (7) since they
depend on b; itself, Eq. (9). While the inversion of the
ensuing 6 X 6 matrix is in principle feasible, Schmidt
{ 1988) has discussed the difficulties that this procedure
would entail. In light of his discussion, we suggest a
simplified procedure whereby for the b; entering Z;
and Z; one may take the solution of (7) without the
last two terms, in which case (7) becomes

26’4T:lbij = (1 - C5)Bij_'-:'(1 - ao)eS,-j

— (1= 2a1)Z(bY) — (1 — 2a2)Z(bY) (12a)

2¢7'bY = (1 - cs)By — 3 (1 — a)eS.  (12b)

In Eq. (12a), the form of the tensors Z;; and Zj; is still
given by Eq. (9) but with b;; substituted with the form
of bY given by Eq. (12b). This approximate procedure
avoids entirely the need to solve the 6 X 6 matrix since
the right-hand side of (12a), with the help of (11), is
now expressed entirely in terms of the kinetic energy
e and of the variables derivable from the LES.

In order to put the new model in perspective, we
note that the most complete SGS model to date is the
SOC2 model of Schmidt and Schumann (1989), rep-
resented by

2eer 7t by = (1 — ¢s)By — g (1 —ao)eS; (13a)

i 2 oT — T
2C6T( 1ui0 = - g e:,’;i - (1 - c7)1'g)\,-u,-05)-5 s (13b)

which implies that Eq. (6b) is considered in the sta-
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tionary case and without the third-order moment. In
Eq. (13a), the contribution from the anisotropic terms
2, and Z; are neglected, and in (13b) the anisotropic
term appearing in the first term of (8) is also neglected.
If (13b) were to be regarded as an ensemble-average
equation, it would imply that
ub =0, (14)
whereas the data show u8 # 0. It is also clear that the
inclusion of the term b;d7/dx; alone would already
remedy this fact and make the model at least in qual-
itative agreement with the data. That is why we propose
that SOC2 must be extended to at least SOC3 or, more
completely, to SOCI.
__In summary, we suggest that the SGS model for e,
62, by and u;0 be given by Egs. (6), (11), and (12) in
the SOC1 version. The model still requires the funtions
¢, T., and 74, to which we now turn.

3. Dissipation in the presence of stratification: The
Lumley-Weinstock model and the inclusion of
gravity waves

The knowledge of 7, and 74 requires the knowledge
of the dissipation rates ¢ and ¢, Eq. (10). In deter-
mining € and ¢ it is customary to write an expression
of the form

(15)

where [ is some typical dissipation length. Since thus
far it has always been assumed that the subgrid scales
are inertial, / was chosen to be given by A within a
numerical constant. In the presence of stratification,
the choice of the proper /is no longer so straightforward
since in addition to A one has the buoyancy scale Ap
defined in (5¢), which could also be used in (15); how-
ever, since in an LES, A is a well-defined quantity, we
shall use it as the proper scale, thus writing € and ¢, in
the following form

e 1 — el/?
6=Ce(e)—A', €a='2'Co(e)02_A‘ (16)
so that
2 A 2 A
= 5, Te= . 7
“Ca@er "amer 1D

We shall now discuss the general expression for C,
and Cg. :

a. Unstable stratification

In this case, one can safely assume that the SGS do
in fact “passively” transfer the energy from the large
scales to the smaller scales without altering the net
amount of energy involved in the process. Under these
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assumptions, the kinetic energy and temperature vari-
ance spectra are well represented by the inertial Kol-
mogorov and Obukhov forms,

G(k) = Bage 13k 73/3,

E(k) = Koe?/*k™%/3 (18)

where Ko and Ba are the Kolmogorov and Batchelor
constants. When these spectra are used in the expres-
sions for the subgrid kinetic energy Eq. (4) and tem-
perature variance

F=f°° G(k)dk,

w/A

(19)

one indeed obtains the expressions for e and ¢, given
by (16) with

2 3/2
Cc(e) > (= W(m) 5

47 2 \”2
Cile) = ¢ = 3Ba (3 Ko) :

that is, the functions C are constants related to the
Kolmogorov and Batchelor constants and are therefore
known (SSM, appendix B).

(20)

b. Stable stratification: The effect of gravity waves

In the case of stable stratification, the physical ar-
guments presented in section 2 indicate that we can
no longer assume that ( 18) represent the subgrid scales
since the spectrum exhibits two ranges, a buoyancy
subrange and an inertial subrange. Equations (18) are
valid only in the latter. In the buoyancy subrange the
energy flow from the largest to the smallest scales under
the action of nonlinearity is no longer the only process.
Working against gravity, the eddies lose a fraction of
their kinetic energy, which is transformed into potential
energy represented by the (8p/p)? fluctuations. This
can be seen from Egs. (6a) and (6b) where, in the case
of stable stratification, the negative flux ;6 acts as a
source for 62 and a sink for the kinetic energy. The
fraction of kinetic energy transformed into potential
energy does not, however, simply cascade toward
smaller scales under the action of an alternative dis-
sipation mechanism (thermal conduction in the case
of temperature). In fact, the latter is too inefficient to
dissipate all the energy extracted from the eddies; the
only alternative route is a backward flow toward larger
scales (Schumann 1987, Dalaudier and Sidi 1987).

If (k) and ey k) represent the fluxes of kinetic energy
and temperature fluctuations across a given wavenum-
ber k, we see from Fig. 1 that the inertial subrange
defined by (k) = const = ¢ attains only for wavenum-
bers k = kg, whereas for k < kg, e(k) decreases with
increasing k, indicating a net loss of energy from the
eddies. In Figs. 2-4 we show the kinetic energy spec-
trum E(k), the temperature variance spectrum G(k),
and the buoyancy spectrum B(k).
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FIG. 1. Turbulent kinetic and mean-square temperature fluctua-
tions spectral fluxes (k) and ¢f k), normalized to their constant values
at k = co. The wavenumber k is in units of k5 = (6/5)/*Ne~"/?,
Eq. (B.7). Were it not for the emission of gravity waves, (k) would
become constant at a much smaller k, e(k) = ¢ = constant indicated
by the dashed line. The lowering of ¢(k) by Ae is discussed in the
text; see Eqgs. (21).

As one can note, the wavenumber kjp thus separates
the two subranges: the buoyancy subrange containing
gravity waves that are only weakly damped (and thus
their effect is maximized), and the inertial subrange,

1.0
0.5
0.0
=
w -0.5
g 1.0
9 .

-2.0 1
-0 ol

1 1 [l 1 A
0.3 05 0.7 09 LI
Log(k/kg)

FIG. 2. Plot of the turbulent energy spectrum E(k), Egs. (B.6)
and (B.9), vs k, in units of kz defined in Eq. (B.7). The Kolmogorov
inertial range, denoted by the slope —5/3, is seen to attain at values
of k = 2kg. At lower values of k, the emission of gravity waves, with
the corresponding loss of kinetic energy by the eddies, is reflected in
the steeper slope of the order of —3. The latter is in accordance with
recent direct numerical simulation results of Gerz and Schumann
(1991, Fig. 5a) and with observational data (Weinstock 1978, 1985b;
Gargett 1989, 1990).
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FIG. 3. The spectrum of the temperature flux w8, B(k), Eq. (B.5)
vs k in units of kp; see Fig. 1. As expected, the flux is negative and
its steep variation with k near kp is in accordance with the DNS
results of Gerz and Schumann (1991, Fig. 7b).

where the gravity waves are strongly damped and in
which there is a constant flux of energy, ¢(k) = const
= ¢, One can alternatively view the new buoyancy sub-
range as a ‘“buoyancy-modified turbulence,” or as
“turbulence-modified waves” since, as Gargett et al.
(1981) have pointed out, one is dealing with ‘vertical
scales between wavelike motion at larger scales and
locally isotropic turbulence at smaller scales.”

If no gravity waves were emitted by the eddies, e(k)
would become constant at a smaller value of k (dashed
line in Fig. 1), indicating a flux independent of wave-
number. In the present case, however, the physical dis-

05
0.0
x -05}
Qo
S -1.0f
-
-1.5
- 1 1 1 i L
2051703 05 067 09 1.
Log (k/kg)

FIG. 4. The spectrum of the temperature variance G(k), Egs. (18)-
(19), vs k in the same units as in Fig. 1. The cusp is due to the fact
that we have plotted the absolute value of G(k), which for k < kpis
actually negative since there is a backward flow of potential energy
from small to large scales (Dalaudier and Sidi 1987). See also Fig.
5b of Gerz and Schumann (1991).
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sipation e = e(k = o0 ) is far smaller. This can be seen
from Eq. (A.9), which represents the conservation of
kinetic plus potential energy. In the stationary case and
neglecting third-order terms we have, with I = —b;S;,

(ga)’

II=¢+ 2

€. (21a)

Since in the unstable case, N* < 0, we have for constant
“IT (the subscripts s and u stand for stable and unstable,
respectively),

e =€ — (ga)?|N?|7!(ef + €f);  (21b)
Eq. (21b) thus implies that
e(stable) < e(unstable) (21¢)

as we set out to prove.

The first to present a heuristic model for these effects
were Bolgiano (1959, 1962), Shur (1962), and Lumley
(1964; for a review see Phillips 1965). As Phillips
pointed out, there are difficulties with Bolgiano’s
model, so we shall discuss only the Shur-Lumley mod-
els. The first assumption was that the Kolmogorov form
for the energy spectrum Eq. (18), which is valid under
the assumption of constant energy flux (k) = const,
can be applied even when ¢ is a function of k provided
that

(22)

The second assumption was that the separation wave-
number is taken 10 be ko, which is a function of € and
N only. Under these assumptions, Lumley’s final result
for the energy spectrum is Eq. (3), which predicts a
unique k3 spectrum in the buoyancy subrange. While
atmospheric and oceanographic data (Gargett et al.
1981; Weinstock 1978, 1985; Dalaudier and Sidi 1987)
are in qualitative agreement with this prediction, they
actually show spectra ranging from —2.5 to —3. More-
over, in the buoyancy subrange where E(k) ~ k73,
condition (22) is not satisfied. More fundamentally,
Weinstock (1978) pointed out that the main assump-
tion that E(k) depends on ¢ and k only [already ques-
tioned by Phillips (1965)] was actually not valid: the
flux of kinetic energy must also depend on the kinetic
energy of the eddies. Weinstock (1978) then proceeded
to include explicitly the effect of gravity waves on the
turbulent energy spectrum, thus achieving a more
complete physical picture (appendix B). The derivation
of the functions C is rather laborious and we shall quote
here only the final resuits:

CJe) = c. exp(—0.053x?) (23a)
NA A
x=om= g (23b)

The function C, versus A/ Apis shown in Fig. 5, where
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FIG. 5. The function C{(e)/c, entering the dissipation ¢, Eq. (16},
as a function of A/Ag. As one can observe, the present model predicts
a behavior in contradiction with Deardorff’s model (1980). See Eq.
(C.10) and Conclusions.

we also plot Deardorff’s model (1980) for C,, given
by Eaq. (C.10); namely;

Cde)= c:“(l + -l-—A—),

2
35, (23¢)

where ¢¥* = (.5. As one can see, the two models predict
opposite behavior for C.. Here we note the following,.

1) FINE-RESOLUTION LES

If one carries out an LES that resolves scales A
smaller than the buoyancy scale, that is, if A/Ap < 1,
one has automatically included the buoyancy range
into the LES, and therefore it can be assumed that the
unresolved scales fall into the inertial range for which
(20) hold true. Our model confirms this expectation;
see Fig. 5. Stated differently, since in a deep LES one
has actually succeeded in resolving almost all the rel-
evant scales, one can reasonably expect that conclu-
sions derived from a DNS be to some extent applicable.
For example, Schumann (1991) has concluded that
within a DNS, stratification does not greatly affect the
dissipation length scale, meaning that one can take C,
=~ ¢, a result confirmed by our model; see Fig. 5.

2) COARSE-RESOLUTION LES

If the LES does not resolve the buoyancy range, that
is, if A/Ap = 1, the subgrid scales are not fully inertial
and the effect of stratification must be accounted for
since C, may be significantly different than c,. This
expectation is indeed borne out by Fig. 5, where C,
becomes considerably smaller than c,, indicating the
physical fact that in this case one has less dissipation
since, as discussed earlier, the eddies have emitted a
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fraction of their energy in gravity waves thus leaving
behind less energy to be dissipated.

One must therefore conclude that the new physical
phenomenon described by C{e) may or may not be
relevant to an LES calculation depending on how deep
the resolution is.

As for Cy( e), the model predicts the following results:

Cile) = Ce(e)w'l[—? — 2w —1) b%] (24a)

w(e) = exp(—0.053x?), vy =N72|VT|%, (24b)

where both e and 62 are still in general time dependent.
Some considerations are in order. Physically, one ex-
pects that in a fine-resolution LES, x < 1, both C, and
C, be almost stratification independent; for this to be
s0, w must be of order unity, which Eq. (24b) confirms
to be the case.

On the other hand, in the case of a coarse-resolution
LES, x = 1, the decrease of kinetic energy dissipation
¢, represented by C./c, < 1, must be compensated by
an increase in dissipation of temperature variance,
which implies that

Co(e)/cy> 1. (25)

The SGS model is now complete. One must solve
Egs. (6), (11), and (12) in conjunction with (17),
(23a,b), and (24). Much as the choice of the appro-
priate C, and C, depends on the nature of the LES
(deep or shallow), so does the choice of the SOC model.
For example, in the case of a deep LES, one may argue
that the anisotropic contributions to b;; and u;f may be
less important than in the shallow LES case and thus
one may resort to an SOC2; in a shailow LES approach,
however, it seems inevitable that one must use the full
SOCI. Finally, it is clear that the need to account for
three spatial dimensions does not allow the introduc-
tion of simple parameterization of #;0 and b;;in terms
of diffusion length scales of heat and momentum.

4. Conclusions

The search for an SGS model for LES calculations
is a difficult and challenging problem, for it involves
the heart of turbulence: the dynamics of the high vor-
ticity small scales. If one could assume that these scales
satisfy Kolmogorov’s strict conditions of being passive
“transferers” of energy from the larger to the smaller
scales, the problem would be solvable. The assumption
of “inertiality” of the subgrid scales is probably rea-
sonable in the case of unstable stratification, but it
ceases to be so in the case of stable stratification, where
gravity removes kinetic energy from the eddies: the
generation of gravity waves becomes the dominant
physical process, with dissipation relegated to higher
wavenumbers. The loss of kinetic energy favors the
creation and maintenance of fluctuations (8p/p)?,
which become an integral part of the overall dynamics.
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Equation (21a) expresses the fact that the total pro-
duction II is now dissipated by both € and ¢, in sharp
contrast to the unstable case.

The main result is that

¢(stable) < e(unstable); (26)

that is, the loss of kinetic energy to create gravity waves
leaves behind less energy to be dissipated by molecular
processes. By the same token, the creation of (3p/p)?
fluctuations increases the amount of energy stored in
potential form with the consequence that there is more
left to dissipation; that is,

es(unstable) < e(stable). (27)

These two facts are represented mathematically by the
functions C{¢) and Cye), which are

Cle)/c. <1, Cye)/cy> 1. (28)

Since the expressions for the C’s have been derived
without assuming a specific closure of the Navier-Stokes
equations, they could, in principle, be used in any clo-
sure model. There is an interesting exception, however,
the FOC model, as we shall now show.

In fact, using ¢, = t, = t3 = 0 in Eqgs. (7)-(8) we
obtain

b,-j = _Clel/zAS,',C:l (29)
_— aT aT
U0 = —ce'’A ™ C:'=—Il,(FOC)e'/? F™ (30)
€= giam - b,jSU (31)

Substituting (29)—-(30) into (31) we obtain an expres-
sion for the energy e; use of it in (30) finally gives the
expression for the convective flux, (o, = ¢,;/2¢>)

8 =~ Ky(FOC) 3 (32)
Ki(FOC) = cA%S(1 — Rie;)!2C2.  (33)

If one takes
Cye) = c., (34)

it is known that the convective fluxes given by (32)
are too large. This shortcoming has traditionally been:
amended by adopting Deardorff’s model (1980),
whereby [see Eq. (C.10)]

C;"(e)=c€(1 +%x) (35)
so that
Cde)>c, (36)

thus lowering the flux. The main result of this paper,
however, is that

Cdle) <c.. (37)
If one were to adopt the new model for C(e), Eq. (32)
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would yield even larger fluxes than in the C(e) = c.
case. This can only be construed as indicating a struc-
tural deficiency of the FOC model (32).

We suggest the SOC1 closure model, together with
the new expressions for C(e) and Cy(e), as a model
that shows no internal inconsistencies and correctly de-
scribes the behavior of stably stratified flows.
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APPENDIX A
The Second-Order Closure Model: SOC

Using the Reynolds stress formalism, one derives
the following equations for b;, u;8, and 6° (e.g., see
Donaldson 1973; Zeman and Lumley 1976; Schemm
and Lipps 1976; Lumley et al. 1978; Zeman 1981):

D 4
B;bij:—zij_ZU-f-Bij—Hfj_Dij_geSij (Al)
D — 2 oT — 3U,
—uf=—b;+=eb;| — — Ou;, —
i (b’ 381)6x,~ " ax;
AT - - fum (A2)
i i axj (Add ] .
D — — 07T d —
= 0% = ~2uf S — == uh? - .
Di uﬂaXi BXiuﬂ 2¢, (A.3)

where \; = g;a (« is the volume expansion coefficient)
and D/ Dt = 9/dt + U;0/dx;; Dy is the third-order mo-
ment defined as

af__ 1 _ ——
Dij = 5;[( [u,»ujuk - 5 Bij-qzukJ . (A.4)
Other symbols are defined in Eq. (9). The pressure
correlations are defined by

) o
HQEG———, =y —+ uy — — ~
! ax; Y u’axj “ox, 3

2,0
ljaxk Dy,
(A.5)

and following Zeman and Lumley (1976, 1979) and
Zeman (1981), we take
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- — 0 —
H? = 206T~lu,‘0 + C7>\102 + a—x1p0

D
- i;‘ am(SkJ- + Rkj)[éi,ﬁuj - Z 6,~j0uk] (A6)

4
H,‘j = 26‘4T”1bij + C5Bij e ‘3' aoeSij - 20[12,'1' - 2(122,']‘.

(A7)

We may note that if 2a; = 2ay = ap = v, the sum of
the last three terms in Eq. (A.7) coincides with the
expression given by Rodi [1984, Eq. (2.64)].

Since the contraction Eq. (A.1) yields an identity,
we must supplement the above equations with the dy-
namical equation for the turbulent kinetic energy e.
This is Eq. (6a). Introducing the potential energy P
(Dalaudier and Sidi 1987),

1 -

P= N (ga)?6?, (A.8)

the sum of the total fluctuating energy, kinetic plus

potential, ¢ + P, satisfies the following equation,

Fig = 1/2q*u; + Pu; is the generalized kinetic energy
flux,

2 (e P) = ~bySy = ¢+ (g2)*N 6]

)

RS —
Fi - 27A7—2,,.02 .
ax,- K t+ 3 (ga) N u,f)

(A9)
As expected, the convective flux, #;0, which physically
represents a mechanism to convert Kinetic into poten-
tial energy or vice versa, has disappeared from Eq.
(A.9). Finally, € and ¢; are the dissipation rates of en-
ergy and temperature fluctuations.

In the stationary case and neglecting the third-order
moments, Egs. (A:1)-(A.2) reduce to Egs. (7)-(8) of
the text, wherea = 1 — 3a,,/Sand b = 1 — a,,.

APPENDIX B

The Dissipation Rates ¢ and ¢,

Following Phillips (1965), the kinetic energy spec-
trum E(k) and mean-square temperature fluctuation
spectrum G(k) satisfy the following equations:

O9E 09 _ % o o L\ B k) — 2k

o T an = "k~ BuSiT NBi(k) — 2ICE(R)
(B.1)

oG | oH,; O¢q oT

==t _ B or ) . '

o "o ok PR g~ BKGH). (B2)

We have generalized Phillips’ derivation by allowing
the mean magnitudes to vary in any arbitrary direction
while linearly in the scales considered. The second
terms on the left-hand sides correspond to the variation
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of E(k) and G(k) due to the transfer in physical space
by the turbulence itself and, following Phillips, can be
neglected in the scales considered; (k) and (k) rep-
resent the net rate of spectral energy and mean-square
temperature fluctuation transfer, respectively, from
wavenumbers smaller than k£ to wavenumbers larger
than k; 8;(k) and B;(k) are the spectra of b; and
u;0, respectively. Following Phillips, we further con-
sider a statistically stationary state with negligible con-
tribution of the molecular terms and of the Reynolds
stresses, both of which are important at larger and
smaller wavenumbers, respectively, to obtain the re-
duced system

)
a3k () = NiBi(k) (B.3)

d oT
a_k ég(k) = _B,(k) '& . (B.4)

i
At this point we refer to Weinstock’s derivation of
B;(k), which we trivially generalize to include varia-
tions of T in arbitrary directions thanks to the assumed
isotropy. The result is [Weinstock 1978a, Eq. (25)
without the factor ga that we have included in A;]

eV/% (0T

(k) = — s €K (91
Bi(k) = =b Koelk)™"" 13 o o,

), (B.5)

where b = (3/2)'/2a and the factor a accounts for pos-
sible anisotropy effects, and we shall take it to be unity.

When Eq. (B.5) is substituted in Eq. (B.3), one ob-
tains for (k) the following expression

3

dk)= e[l + % b KoNze“‘/3k§5/3e'”2C(k/kB)]

(B.6)
where the wavenumber kj is defined as
6 172
kg = (g) Ne~'/? (B.7)
and where
Cly) = f x723(1 + x?)dx. (B.8)
y

Here, € = ¢(00). With this expression for ¢(k) one then
resorts to the so-called “local inertiality” hypothesis to
write

E(k) = Koe(k)*3k=33. (B.9)

Inserting (B.6)-(B.9) into the expression for the tur-
bulent kinetic energy of the subgrid scales, namely,

e= r E(kYdk, km=w/A,  (B.10)
km

one can express € in terms of e in the form given by
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Eq. (16). With the expression for ¢, given by Eq. (20),
we finally obtain for C,

C. = cSF KO 2R (ym)yml(1 + 8)'72 — 113, (B.11)
where .
So = b(25/486)1/2 (B.12)
4
b= %Irzy,‘,?”(?zz_s b2 Ko™ ~ 12)

ki _ (572\2 e

Ym= % \6 ) AN
I, = C"(x)x'5/3dx. (B.13)

Ym

The expression for C, is only a function of the turbulent
kinetic energy through the dimensionless variable NA/
¢'/2, For neutral stratification

N—->0, y,—> o, C.—>c. (B.14)

In the general case, we have found that it is possible
to fit the numerical values of C(e) with an expression
of the form

Cle) = c.exp(—0.053x%), x= oIz (B.15)

Next, we obtain an ¢xpression for ¢. From Eqgs.
(B.3)-(B.4), we derive

9

9
gk = vk, (B16)

where ¥ = N~2|VT|2. Upon integration, one gets
(k) = ¢ — y[e(k) — €]. (B.17)

Substituting (B.17) into the definition of G(k) written
assuming the “local inertiality” hypothesis

G(k) = Baey(k)e '3 (k)k>/3, (B.18)

we can derive an expression for 6 from Eq. (19). Using
Eqgs. (10), one finally gets

€

Co(e) = Cé(e)w"’[? - 2v(w — I)O—ez], (B.19)

where
© =2y (CLe)/c)*  (B20)
I(ym) = r x3B[1 + 9C(x)]'dx  (B.21)
Ym
5b (3\'/2
WEE(E) Ko32y 13(Cfe)/c) /3. (B.22)

It is easy to check that in the neutral case, 3, = o0,
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w —> 1, and thus, C,/¢, = C/c.. We have computed
w and found that it can be parameterized as

w(e) = exp(—0.053x2), (B.23)

where x is defined in Eq. (B.15). Since C, has already
been parameterized in terms of the kinetic energy by
Eq. (B.15), the expression for Cy(e) can also be con-
sidered given in terms of the energy e and 6°.

APPENDIX C
Subgrid Scales: The FOC Model
Here we review some of the FOC models based on
Egs. (6), (7), and (8).
a. The Kolmogoroff (1942)-Prandtl model (1945)
(Rodi 1984)

This FOC model can be obtained by taking ¢, = ¢,
= 0 in Eq. (7), so that

bij = “2KmS,'j. (Cl)
Making use of Eq. (16), one obtains
K, = Ce'’?A, (C.2)

where C = (1 — ag)(C.cs)™"; C. is usually identified
with the constant c,.

b. Smagorinsky (1963) and Lilly (1966) extension
of the FOC model

Equation (C.2) still expresses K,,, in terms of the
kinetic turbulent energy that must be obtained by solv-
ing Eq. (6a). A further simplification of the latter
equation consists of taking the stationary case and ne-
glecting the third-order moment. This leads to

€= g,au,-ﬁ — b[jSij, (C3)
which finally yields
K, = (CsA)2S(1 — o7 Ri)'/2, (C4)

where Cy is the Smagorinsky constant, which in prin-
ciple is now energy dependent; that is,

C?S‘ P C3/2C:l/2'

Here, S is the shear, S? = 2(.S;;S), Ri is the Richardson
number Ri = N?/S?, Nis the Brunt-Viisili frequency,
N? = g,adT/dx;, and o, = K,n/Kj, is the turbulent
Prandtl number. In deriving (C.4) we have introduced
a turbulent diffusivity K}, via

uif = —K,9T/dx;.

(C.5)

(C.6)

For neutral stratification, Ri = 0, Eq. (C.4) coincides
with the Smagorinsky model, whereas for Ri # 0, it is
Lilly’s model. It is clear that without further relations,
the formula for K,, is incomplete since the turbulent
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Prandtl number ¢,, which in principle is a function of
the Richardson number, it not given by the model.

¢. The Nieuwstadt (1990) model

This FOC model is derived by taking t, = ¢, = 13
= 01n Egs. (7) and (8). One derives

K,, = ahe'’?, K, = bAe'’?, (C.7)

with b = (2/3¢C.) and a = (1 — ao)(caC.)™". For
unstably stratified flows C, = ¢,, whereas in the case of
stably stratified flows, C, is taken in accordance with
Deardorff’s model (1980), which we have discussed
in the Conclusions.

d. The Mason (1989) model

In his LES work, Mason adopted Eq. (C.4) rewritten
as

K, = C3A2S(1 — BR)VA(1 + No/kz) %, (C8)

where R/ is the flux Richardson number R;= ¢;' Ri,
x is the von K4arman constant, and Ay = CsA. The
parameter (3 is such that when R, < 0, 8 = 1; when R,
> 0, 8 = 3 and finally, for R, > 87!, K,, = 0. The
turbulent diffusivity K}, is given by ¢,K}, = K, with the
turbulent Prandtl number ¢, assumed to be 5. The z
dependence in (C.8) assures a smooth joining with the
Obhukov similarity law.

e. The Moeng (1984) and Moeng and Wyngaard
(1989) models

In their LES work the authors adopted the original
Deardorff (1980) model whereby

e=Ce, K, =0.1e'?, K, = (1 + 2l/A)K,,,,
(C.9)

where C=0.1940.51//A.In (C.9), | = A for unstable
stratification, while / = 0.76¢!/>N ! for stable strati-
fication. In a stably stratified case, Deardorff’s expres-
sion for € can be recast in the form (16) with the result
that

Cle) = c;"(l + %x),

where c¥ = 1 and x, is defined by Eq. (23b).

As one can see, Deardorff’s C, is an increasing func-.
tion of x, whereas the present model predicts a C, that
decreases with x.

(C.10)
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